Fractal dimensions for Poincaré recurrences (2023)

  1. Home
  2. Catalogus
  3. Fractal dimensions for Poincaré recurrences

boek

(Video) Fractals: Koch curve, Cantor set, non-integer dimension

Fractal dimensions for Poincaré recurrences

V. S Afraĭmovich, E Ugalde, J Urías Published in 2006 in Amsterdam London by Elsevier

1. Introduction -- -- Part 1: Fundamentals -- -- 2. Symbolic Systems -- 3. Geometric Constructions -- 4. Spectrum of Dimensions for Recurrences -- -- Part II: Zero-Dimensional Invariant Sets -- -- ... toon meer

Bekijk online enkel UGent

Uitgebreide beschrijving

(Video) Fractals in Neurosciences by Dr. Antonio Di Ieva

(Video) Fractal Dimension - Box-Counting & Correlation Dimension

Meer van

  • V. S Afraĭmovich
  • E Ugalde
  • J Urías

Meer over

  • Fractals
  • MATHEMATICS Topology
  • Poincaré series

Uitgebreide beschrijving

  • Details
  • Citeren
  • Voor bibliothecarissen
  • Voor ontwikkelaars
Permalink:
https://lib.ugent.be/catalog/ebk01:1000000000357832
Titel:
Fractal dimensions for Poincaré recurrences / V. Afraimovich, E. Ugalde and J. Urías.
ISBN:
9780444521897
0444521895
0080462391
9780080462394
1280641851
9781280641855
9786610641857
6610641854
Auteur (persoon):
Afraĭmovich, V. S.
Ugalde, E.
Urías, J.
Uitgever:
Amsterdam ; London : Elsevier, 2006.
Beschrijving:
1 online resource (xi, 245 pages) : illustrations
Reeks:
Monograph series on nonlinear science and complexity, 1574-6917 ; v. 2
Nota:
English.
Bibliographie:
Includes bibliographical references and index.
Inhoud:
1. Introduction -- -- Part 1: Fundamentals -- -- 2. Symbolic Systems -- 3. Geometric Constructions -- 4. Spectrum of Dimensions for Recurrences -- -- Part II: Zero-Dimensional Invariant Sets -- -- 5. Uniformly Hyperbolic Repellers -- 6. Non-Uniformly Hyperbolic Repellers -- 7. The Spectrum for a Sticky Set -- 8. Rhythmical Dynamics -- -- Part III: One-Dimensional Systems -- -- 9. Markov Maps of the Interval -- 10. Suspended Flows -- -- Part IV: Measure Theoretical Results -- -- 11. Invariant Measures -- 12. Dimensional for Measures -- 13. The Variational Principle -- -- Part V: Physical Interpretation and Applications -- -- 14. Intuitive Explanation -- 15. Hamiltonian Systems -- 16. Chaos Synchronization -- -- Part VI: Appendices -- -- 17. Some Known Facts About Recurrences -- 18. Birkhoff's Individual Theorem -- 19. The SMB Theorem -- 20. Amalgamation and Fragmentation -- -- Index.
Samenvatting:

This book is devoted to an important branch of the dynamical systems theory : the study of the fine (fractal) structure of Poincare recurrences -instants of time when the system almost repeats its initial state. The authors were able to write an entirely self-contained text including many insights and examples, as well as providing complete details of proofs. The only prerequisites are a basic knowledge of analysis and topology. Thus this book can serve as a graduate text or self-study guide for courses in applied mathematics or nonlinear dynamics (in the natural sciences). Moreover, the book can be used by specialists in applied nonlinear dynamics following the way in the book. The authors applied the mathematical theory developed in the book to two important problems: distribution of Poincare recurrences for nonpurely chaotic Hamiltonian systems and indication of synchronization regimes in coupled chaotic individual systems. * Portions of the book were published in an article that won the title "month's new hot paper in the field of Mathematics" in May 2004 * Rigorous mathematical theory is combined with important physical applications * Presents rules for immediate action to study mathematical models of real systems * Contains standard theorems of dynamical systems theory.

Dewey:
514.742 22
Onderwerp:
Fractals.
Poincaré series.
MATHEMATICS Topology. (source)bisacsh
Fractals. (source)fast (OCoLC)fst00933507
Poincaré series. (source)fast (OCoLC)fst01068096
Electronic books.
Electronic books.
E-Locatie:
https://www.sciencedirect.com/science/bookseries/15746917/2
Beschikbaar als:
Print version: Afraĭmovich, V.S. (Valentin Senderovich). Fractal dimensions for Poincaré recurrences. Amsterdam ; London : Elsevier, 2006 0444521895 9780444521897 (OCoLC)64959093
Permalink:
https://lib.ugent.be/catalog/ebk01:1000000000357832
MLA:
Afraĭmovich, V. S, E Ugalde, and J Urías. Fractal Dimensions for Poincaré Recurrences. Amsterdam: Elsevier, 2006.
APA:
Afraĭmovich, V. S, Ugalde, E., & Urías, J. (2006). Fractal dimensions for Poincaré recurrences. Amsterdam: Elsevier.
Chicago:
Afraĭmovich, V. S., E Ugalde, and J Urías. Fractal Dimensions for Poincaré Recurrences. Amsterdam: Elsevier, 2006.
RIS:
TY - BOOKUR - http://lib.ugent.be/catalog/ebk01:1000000000357832ID - ebk01:1000000000357832LA - engTI - Fractal dimensions for Poincaré recurrencesPY - 2006SN - 9780444521897SN - 0444521895SN - 0080462391SN - 9780080462394SN - 1280641851SN - 9781280641855SN - 9786610641857SN - 6610641854PB - Amsterdam ; London : ElsevierAU - Afraĭmovich, V. S.AU - Ugalde, E.AU - Urías, J.AB - 1. Introduction -- -- Part 1: Fundamentals -- -- 2. Symbolic Systems -- 3. Geometric Constructions -- 4. Spectrum of Dimensions for Recurrences -- -- Part II: Zero-Dimensional Invariant Sets -- -- 5. Uniformly Hyperbolic Repellers -- 6. Non-Uniformly Hyperbolic Repellers -- 7. The Spectrum for a Sticky Set -- 8. Rhythmical Dynamics -- -- Part III: One-Dimensional Systems -- -- 9. Markov Maps of the Interval -- 10. Suspended Flows -- -- Part IV: Measure Theoretical Results -- -- 11. Invariant Measures -- 12. Dimensional for Measures -- 13. The Variational Principle -- -- Part V: Physical Interpretation and Applications -- -- 14. Intuitive Explanation -- 15. Hamiltonian Systems -- 16. Chaos Synchronization -- -- Part VI: Appendices -- -- 17. Some Known Facts About Recurrences -- 18. Birkhoff's Individual Theorem -- 19. The SMB Theorem -- 20. Amalgamation and Fragmentation -- -- Index.AB - This book is devoted to an important branch of the dynamical systems theory : the study of the fine (fractal) structure of Poincare recurrences -instants of time when the system almost repeats its initial state. The authors were able to write an entirely self-contained text including many insights and examples, as well as providing complete details of proofs. The only prerequisites are a basic knowledge of analysis and topology. Thus this book can serve as a graduate text or self-study guide for courses in applied mathematics or nonlinear dynamics (in the natural sciences). Moreover, the book can be used by specialists in applied nonlinear dynamics following the way in the book. The authors applied the mathematical theory developed in the book to two important problems: distribution of Poincare recurrences for nonpurely chaotic Hamiltonian systems and indication of synchronization regimes in coupled chaotic individual systems. * Portions of the book were published in an article that won the title "month's new hot paper in the field of Mathematics" in May 2004 * Rigorous mathematical theory is combined with important physical applications * Presents rules for immediate action to study mathematical models of real systems * Contains standard theorems of dynamical systems theory.ER - 
Download RIS bestand
Permalink:
https://lib.ugent.be/catalog/ebk01:1000000000357832
05629cam a2200817Ia 4500
001 ocn162131367
003 OCoLC
005 20210106044111.2
006 m o d
007 cr cn|||||||||
008 070802s2006 ne a ob 001 0 eng d
010 z 01326096
040 a OPELS b eng e pn c OPELS d BAKER d OCLCG d OPELS d OCLCQ d N$T d YDXCP d MERUC d ZCU d E7B d IDEBK d OCLCQ d OPELS d OCLCO d OCLCF d UKMGB d DEBSZ d OCLCQ d EBLCP d NRU d UKDOC d OCLCQ d STF d D6H d OCLCQ d LEAUB d OL$ d OCLCQ d VLY d S2H d OCLCO
015 a GBA631548 2 bnb
016 7 a 013426096 2 Uk
019 a 77481806 a 441765900 a 476003708 a 507140616 a 647547426 a 823857293 a 823927390 a 824117001 a 824168779 a 1162394289
020 a 9780444521897
020 a 0444521895
020 a 0080462391 q (electronic bk.)
020 a 9780080462394 q (electronic bk.)
020 a 1280641851
020 a 9781280641855
020 a 9786610641857
020 a 6610641854
029 1 a AU@ b 000048129539
029 1 a DEBBG b BV042311050
029 1 a DEBSZ b 27748801X
029 1 a DEBSZ b 430357281
029 1 a DEBSZ b 482353945
029 1 a NZ1 b 12434652
029 1 a YDXCP b 2501690
035 a (OCoLC)162131367 z (OCoLC)77481806 z (OCoLC)441765900 z (OCoLC)476003708 z (OCoLC)507140616 z (OCoLC)647547426 z (OCoLC)823857293 z (OCoLC)823927390 z (OCoLC)824117001 z (OCoLC)824168779 z (OCoLC)1162394289
037 a 131790:131896 b Elsevier Science & Technology n http://www.sciencedirect.com
050 4 a QA614.86 b .A45 2006eb
072 7 a MAT x 038000 2 bisacsh
082 4 a 514.742 2 22
049 a MAIN
100 1 a Afraĭmovich, V. S. q (Valentin Senderovich)
245 1 a Fractal dimensions for Poincaré recurrences / c V. Afraimovich, E. Ugalde and J. Urías.
260 a Amsterdam ; a London : b Elsevier, c 2006.
300 a 1 online resource (xi, 245 pages) : b illustrations
336 a text b txt 2 rdacontent
337 a computer b c 2 rdamedia
338 a online resource b cr 2 rdacarrier
490 1 a Monograph series on nonlinear science and complexity, x 1574-6917 ; v v. 2
520 a This book is devoted to an important branch of the dynamical systems theory : the study of the fine (fractal) structure of Poincare recurrences -instants of time when the system almost repeats its initial state. The authors were able to write an entirely self-contained text including many insights and examples, as well as providing complete details of proofs. The only prerequisites are a basic knowledge of analysis and topology. Thus this book can serve as a graduate text or self-study guide for courses in applied mathematics or nonlinear dynamics (in the natural sciences). Moreover, the book can be used by specialists in applied nonlinear dynamics following the way in the book. The authors applied the mathematical theory developed in the book to two important problems: distribution of Poincare recurrences for nonpurely chaotic Hamiltonian systems and indication of synchronization regimes in coupled chaotic individual systems. * Portions of the book were published in an article that won the title "month's new hot paper in the field of Mathematics" in May 2004 * Rigorous mathematical theory is combined with important physical applications * Presents rules for immediate action to study mathematical models of real systems * Contains standard theorems of dynamical systems theory.
505 a 1. Introduction -- -- Part 1: Fundamentals -- -- 2. Symbolic Systems -- 3. Geometric Constructions -- 4. Spectrum of Dimensions for Recurrences -- -- Part II: Zero-Dimensional Invariant Sets -- -- 5. Uniformly Hyperbolic Repellers -- 6. Non-Uniformly Hyperbolic Repellers -- 7. The Spectrum for a Sticky Set -- 8. Rhythmical Dynamics -- -- Part III: One-Dimensional Systems -- -- 9. Markov Maps of the Interval -- 10. Suspended Flows -- -- Part IV: Measure Theoretical Results -- -- 11. Invariant Measures -- 12. Dimensional for Measures -- 13. The Variational Principle -- -- Part V: Physical Interpretation and Applications -- -- 14. Intuitive Explanation -- 15. Hamiltonian Systems -- 16. Chaos Synchronization -- -- Part VI: Appendices -- -- 17. Some Known Facts About Recurrences -- 18. Birkhoff's Individual Theorem -- 19. The SMB Theorem -- 20. Amalgamation and Fragmentation -- -- Index.
504 a Includes bibliographical references and index.
588 a Print version record.
546 a English.
590 a Elsevier b ScienceDirect All Books
650 a Fractals.
650 a Poincaré series.
650 7 a MATHEMATICS x Topology. 2 bisacsh
650 7 a Fractals. 2 fast 0 (OCoLC)fst00933507
650 7 a Poincaré series. 2 fast 0 (OCoLC)fst01068096
655 a Electronic books.
655 4 a Electronic books.
700 1 a Ugalde, E. q (Edgardo)
700 1 a Urías, J. q (Jesús)
776 8 i Print version: a Afraĭmovich, V.S. (Valentin Senderovich). t Fractal dimensions for Poincaré recurrences. d Amsterdam ; London : Elsevier, 2006 z 0444521895 z 9780444521897 w (OCoLC)64959093
830 a Monograph series on nonlinear science and complexity ; v v. 2. x 1574-6917
856 4 u https://www.sciencedirect.com/science/bookseries/15746917/2
938 a 123Library b 123L n 35293
938 a Baker & Taylor b BKTY c 145.00 d 145.00 i 0444521895 n 0006753917 s active
938 a EBL - Ebook Library b EBLB n EBL270383
938 a ebrary b EBRY n ebr10138466
938 a EBSCOhost b EBSC n 166941
938 a ProQuest MyiLibrary Digital eBook Collection b IDEB n 64185
938 a YBP Library Services b YANK n 2501690
994 a 92 b BEUBG

Andere formaten

Alle hieronder opgesomde data zijn beschikbaar met de Open Data Commons Open Database Licentie. Het staat je vrij de data te kopiëren en te distribueren, om afgeleide producten van deze data te maken, en om de data aan te passen en transformeren. Wij vragen wel dat je altijd verwijst naar de brondatabank, je afgeleide producten ook onder ODbL vrijgeeft en geen enkele technologie gebruikt om deze datasets weer gesloten te maken (zoals bijv DRM).
De datasets zijn ook beschikbaar als een wekelijkse export.

Permalink:
https://lib.ugent.be/catalog/ebk01:1000000000357832
JSON:
https://lib.ugent.be/catalog/ebk01:1000000000357832.json
DC XML:
https://lib.ugent.be/catalog/ebk01:1000000000357832.dc_xml
OAI DC XML:
https://lib.ugent.be/catalog/ebk01:1000000000357832.oai_dc_xml
MARCXML:
https://lib.ugent.be/catalog/ebk01:1000000000357832.marcxml
MARC:
https://lib.ugent.be/catalog/ebk01:1000000000357832.marc
(Video) [Reversed] The Next Dimension - Mandelbrot Fractal Zoom
(Video) Heterogeneous Recurrence Analysis

Videos

1. Group theory, abstraction, and the 196,883-dimensional monster
(3Blue1Brown)
2. Dr.R.Uthyakumar - Fractal Analysis and its Applications
(Shanthakumar George)
3. The Puzzling Fourth Dimension (and exotic shapes) - Numberphile
(Numberphile)
4. OBSCURA - "Fractal Dimension" (Official Track)
(RelapseRecords)
5. Benoit B. Mandelbrot, MIT 2001 - Fractals in Science, Engineering and Finance (Roughness and Beauty)
(MIT Video Productions)
6. Dynamical Systems in Neuroscience 12: Chaos in the Brain!
(NeuroLogos)
Top Articles
Latest Posts
Article information

Author: Jonah Leffler

Last Updated: 11/21/2022

Views: 6392

Rating: 4.4 / 5 (65 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Jonah Leffler

Birthday: 1997-10-27

Address: 8987 Kieth Ports, Luettgenland, CT 54657-9808

Phone: +2611128251586

Job: Mining Supervisor

Hobby: Worldbuilding, Electronics, Amateur radio, Skiing, Cycling, Jogging, Taxidermy

Introduction: My name is Jonah Leffler, I am a determined, faithful, outstanding, inexpensive, cheerful, determined, smiling person who loves writing and wants to share my knowledge and understanding with you.